Year 2 Maths Activities

Week Beginning 11.1.21

Dear Parents and Carers,
This week's maths activities will be about Addition and Subtraction - an area that many children need to consolidate.

Below, you'll notice that the activities have been organised into three levels so that you can choose the most appropriate ones for your child. Most pupils will be working at the expected standard so should do this part of the task each day; however, please contact the year 2 team (y2@elystjohns.cambs.sch.uk) if you are unsure which level your child should be working at. Even a child who is Working at a Greater Depth could use some of the other activities as a 'brain warm-up' before completing the more challenging tasks.

Below is an explanation of how we teach addition and subtraction in Year 2. There are two videos on the website for you and your child to watch which demonstrate how we expect the children to add and subtract in year 2.

The big focus in Year 2 is about working with 2-digit numbers. Some children may still be working with 1-digit numbers and some will be working with 3-digit numbers, but the majority will be adding and subtracting using 2-digits.

We do lots of work where we group objects into tens and ones. This work on tens and ones is extremely important when we come to adding and taking away.

In school, we use these;

They are called 'Diennes' or are sometimes called 'Base 10' (the brand name). They come in little cubes to represent the ones, rods to represent the tens, squares to represent the hundreds and large cubes to represent thousands. In year 2, we mainly work with the little cubes and the rods, as these represent ones and tens.

We teach the children to draw these, like this:

When we add together two 2-digit numbers, we can use our drawing to help us. Alternatively, we can use a column method as demonstrated in the video (children can choose which method they prefer, but we teach both to everybody).

Addition of two 2-digit numbers (not crossing ten)		
Drawing Method		Column Method
$54+21=$		$54+21=$
Step 1 - draw your boxes.		Step 1 - set out your calculation in columns (it helps to use squared paper).
$54+21=$		$\begin{array}{r} 54 \\ +21 \end{array}$
Step 2-draw your tens and ones.$54+21=$		Step 2 - add together the ones first.
		54
		+21
		5
\|IIII	\because	\square
11		
\longrightarrow		Step 3-add together the tens.
Step 3 - add together the ones (ALWAYS ADD THE ONES FIRST), then the tens.		54
		+21
		5
		70
		Step 4 - add the tens and ones together.

Sometimes when we add, we will cross the tens boundary. This is not a problem and we can do it in exactly the same way;

Step 4 - add the tens and ones together.	27
$27+16=$	$+16$
*tens ones	$13^{(7+6=13)}$
$\begin{array}{\|l\|l\|} \hline 11 & :: 8 \\ \hline \end{array}$	$\frac{30}{43}$
$30+13=43$	

So, what about subtraction? We don't do the column method for subtraction because it gets a bit complicated when we have to exchange tens (we say 'exchange', we no longer say 'borrow'). Instead, we teach children to draw the tens and ones.

Subtraction of two 2-digit numbers (not crossing ten)

 67-22 =Step 1 - draw your boxes.
67-22 =

Step 2 - draw the tens and ones for the first number in the number sentence (the larger number).
67-22=

Step 3 - subtract the ones first by crossing out the number that are being taken away and write how many are left in the box underneath.

Step 4 - subtract the tens by crossing out the number that are being taken away and write how many are left in the box underneath.
67-22 =

Step 5 - add the tens and ones from your answers together.
67-22 =

Finally, we have to teach children what to do when crossing the tens. They will need to 'exchange' a ten (we don't say 'borrow' anymore). We teach them to recognise when this will be necessary by getting them to look at the ones in both numbers. If the ones in the second number are greater than in the first number, then they will need to exchange. Here is an example;

Subtraction of two 2-digit numbers (crossing ten)	
$53-27=$ Step 1 - draw your boxes. $53-27=$	Step 2 - draw your tens and ones from the first number in the number sentence (the larger number). $53-27=$
Step 3 - to exchange a ten, cross out one ten and draw ten dots in the ones column (along with the ones that were already there).	Step 4 - now proceed with the calculation by subtracting the ones first (cross out the number that are to be taken away).

53-27=	$53-27=$
Step 5 - now subtract the tens (cross out the number that are to be taken away). $53-27=$	Step 6 - add the tens and ones from your answers together. $53-27=$ $20+6=26$

Activity 1	Objective: Bonds to 10, 20, 100 and related facts. - Children should know 'off by heart' the pairs of numbers that go together to make 10 and 20. - Children should be able to work out the pairs of numbers that make 100. - Children should have an understanding of calculations with similar digits, e.g. $2+5=7$, so $20+50=70$. Working Towards the Expected Standard Number Bonds to make 10. - Start by checking whether or not your child knows their number bonds to 10 ; $\begin{aligned} & 0+10=10 \\ & 1+9=10 \\ & 2+8=10 \\ & 3+7=10 \\ & 4+6=10 \\ & 5+5=10 \end{aligned}$ They should understand that we can switch the numbers around and still get the same answer, e.g. if $4+6=10$, then $6+4=10$.

	if you feel that this would be useful for your child, do some of this. Encourage them to start with the bigger number, so if we had $3+8$, we can turn it around to $8+3$, as this will be easier. - Once children are happy with counting on, they should be able to count on (in ones) from any number. You could give them a 100 square. They find the starting number and count on in ones to find their answer. So $57+6=63$ (for example). - If they are happy with counting on, they could set out their work by drawing tens and ones, or as a column method (described above). They do it in exactly the same way...... Working At the Expected Standard Use the methods described above (e.g. column method) to answer these questions: (Activity 2 sheet attached separately - you could get your child to do it on the sheet or write out the questions in the format suggested). $\begin{aligned} & 44+23= \\ & 65+21= \\ & 22+22= \\ & 68+20= \\ & 54+22= \\ & 84+12= \\ & 47+50= \\ & 12+23= \\ & 75+14= \\ & 47+21= \end{aligned}$ Extra Activities for Children Working at Greater Depth

	Katie has 12 marbles. What digits could go in the boxes? Jim has 13 marbles more than Katie. $2+$ \square $5=87$ How many marbles do they have altogether?
Activity 3	Objective: Addition of two 2-digit numbers (crossing 10). Working Towards the Expected Standard Ten more. - Children begin to see what happens when they add ten to another number. Use a 100 square and practice adding tens, so numbers like $30+10,50+10$, etc. Ask your child to find the starting number and count on 10 more. They should quickly start to see that they don't need to count every time, we look at the number that is under our starting number when we are adding 10. - Once children are happy with the above, they should be able to do the same for any number, so $35+10=45,29+10=39$, and so on. When doing this, encourage your child to see that the number in the tens place has changed (we've added one more ten), but the number in the ones place has not changed. - Once we can add one ten, we can add more tens, e.g. $56+20$, we know that 20 is two tens, so we look for the number that is two places below our starting number. - In time, you should be able to work to a place where children no longer need their 100 square to do this because they have completely understood the way in which the numbers are organised on the square. - They can start to lay this out as tens and ones or as a column method too, like this;

	Can you write a step by step explanation of how you answered this question?
Activity 5	PLEASE SEND A PHOTO OF YOUR CHILD'S WORK FROM THIS ACTIVTY TO y2@elystjohns.cambs.sch.uk Objective: Subtraction of two 2-digit numbers (crossing 10). Working Towards the Expected Standard Ten less. - Children begin to see what happens when they subtract ten from another number. Use a 100 square and practice subtracting tens, so numbers like 30-10,50-10, etc. Ask your child to find the starting number and count back 10. They should quickly start to see that they don't need to count every time, we look at the number that is above our starting number when we are subtracting 10. - Once children are happy with the above, they should be able to do the same for any number, so $35-10=25,29-10=19$, and so on. When doing this, encourage your child to see that the number in the tens place has changed (we've taken away one ten), but the number in the ones place has not changed. - Once we can subtract one ten, we can subtract more tens, e.g. 56-20, we know that 20 is two tens, so we look for the number that is two places above our starting number. - In time, you should be able to work to a place where children no longer need their 100 square to do this because they have completely understood the way in which the numbers are organised on the square. - They can start to lay this out as tens and ones too, like this;

A Little Extra

The White Rose End of Block Assessment is also attached with the other resources. Children do one of these at the end of each maths topic, some may have they have already tried this at the end of the term. You might want to give it to them at the end of this week to see if they can complete it independently and if there are still things they have not understood.

