With counters, cubes or dots in your book or on a whiteboard, use grouping to complete the division problems practically. \checkmark Tick each step as you go.

Read the division problem out loud	Count out the total number of counters	Group the counters	Record the answer
$18 \div 2=\ldots$			$18 \div 2=\ldots$
$15 \div 5=\ldots$			$15 \div 5=\ldots$
$20 \div 10=$			$20 \div 10=$

Show your grouping on a number line.
(1)
$22 \div 2=$ \qquad

0	0	8	10	12	14	16	18	20	22	24	

(2)
$25 \div 5=$ \qquad

(3)

$$
50 \div 10=
$$

\qquad

0	10	20	30	40	50	60	70	80	90	10

With counters, cubes or dots on a whiteboard, use grouping to complete the division problems practically. \checkmark Tick each step as you go.

Read the division problem out loud	Count out the total number of counters	Group the counters	Record the answer
$18 \div 2=$	\checkmark	\checkmark	$18 \div 2=9$
$15 \div 5=$	\checkmark	\checkmark	$15 \div 5=3$
$20 \div 10=$	\checkmark	\checkmark	$20 \div 10=2$

Show your grouping on a number line.
(1)
$22 \div 2=\underline{11}$

(2)

$$
25 \div 5=\quad 5
$$

(3)

$$
50 \div 10=5
$$

With counters, cubes or dots in your book or on a whiteboard, use grouping to complete the division problems practically. \checkmark Tick each step as you go.

Read the division problem out loud	Count out the total number of counters	Group the counters	Record the answer
$18 \div 2=\ldots$			$18 \div 2=-$
$30 \div 5=\ldots$			
$40 \div 10=\ldots$			
$12 \div 3=$			

Show your grouping on a number line.
(1)
$24 \div 2=$ \qquad

(2)
$45 \div 5=$ \qquad
(3)

$$
80 \div 10=
$$

\qquad

With counters, cubes or dots on a whiteboard, use grouping to complete the division problems practically. \checkmark Tick each step as you go.

Read the division problem out loud	Count out the total number of counters	Group the counters	Record the answer
$18 \div 2=$	\checkmark	\checkmark	$18 \div 2=9$
$30 \div 5=$	\checkmark	\checkmark	$30 \div 5=6$
$40 \div 10=$	\checkmark	\checkmark	$40 \div 10=4$
$12 \div 3=$	\checkmark	\checkmark	$12 \div 3=4$

Show your grouping on a number line.
(1) $24 \div 2=12$

(2)

$$
45 \div 5=\quad 9
$$

(3)

$$
80 \div 10=8
$$

With counters, cubes or dots in your book or on a whiteboard, use grouping to complete the division problems practically. \checkmark Tick each step as you go.

Read the division problem out loud	Count out the total number of counters	Group the counters	Record the answer
$22 \div 2=\ldots$			$22 \div 2=$
$35 \div 5=\ldots$			
$40 \div 10=\ldots$			
$18 \div 3=$			

Show your grouping on a number line.
(1)
$24 \div 2=$ \qquad
\square
(2)
$40 \div 5=$ \qquad

3
$21 \div 3=$ \qquad

With counters, cubes or dots on a whiteboard, use grouping to complete the division problems practically. \checkmark Tick each step as you go.

Read the division problem out loud	Count out the total number of counters	Group the counters	Record the answer
$22 \div 2=$	\checkmark	\checkmark	$22 \div 2=\underline{11}$
$35 \div 5=$	\checkmark	\checkmark	$35 \div 5=7$
$40 \div 10=$	\checkmark	\checkmark	$40 \div 10=4$
$18 \div 3=$	\checkmark	\checkmark	$18 \div 3=6$

Show your grouping on a number line.
(1)
$24 \div 2=12$

(2)

$$
40 \div 5=8
$$

(3)

$$
21 \div 3=
$$

