Year 2 Maths Activities - Week Beginning 4.5.20.

Dear Parents and Carers,
In Year 2, we have now covered all of the Maths topics. They are as follows;

- Place Value,
- Addition and Subtraction,
- Multiplication and Division,
- Fractions,
- Statistics,
- Capacity and Volume,
- Mass (weight),
- Time,
- Shape,
- Position and Direction.

The topics that we have asked you to cover through your home learning are;

- Temperature,
- Length and Height,
- Money.

Just because we have covered everything, certainly does not mean that there is nothing left for children to do! They will all need to consolidate, especially since some of these topics were covered way back at the beginning of the year. Some children may not have fully understood a concept the first time around or may have trouble remembering it. Other children may have done well, but need to deepen their learning by applying it to new challenges and problem solving activities.

Normally at this point in the year, we would be revising for the SATs tests and then actually doing the tests themselves. After that, there would be time for further consolidation and applying our learning to problem solving activities. As you know, the SATs are no longer going ahead, but this time of revision and consolidation is still extremely valuable.

You will soon receive your child's Annual School Report and the report will make clear the areas that your child needs to work on specifically. Tasks will then be posted on the website that should help to address the areas we have signposted. In the meantime, the activities will focus on Place Value, since this will be useful for all children and can help their learning across many other areas of Maths.

Hopefully you will already have some idea of the level your child is currently working at in maths, based on conversations that you have had with your child's teacher over the course of the year. Most children will be 'Working At the Expected Standard'. Some children may be working at a lower level and this will be described as 'Working Towards the Expected Standard'. Some children might be working at a higher level and will be
described as 'Working At Greater Depth'. The activities below have been organised into these three levels, so that you can choose which activities are most suitable for your child. You do not have to complete all of them, but you may wish to. Even a child who is Working At Greater Depth could use some of the easier activities as a 'brain warm-up' before completing the more challenging tasks.

There are only four days worth of work below, rather than five. This is taking into account the Bank Holiday on Friday $8^{\text {th }}$ May.

- Ask your child to count from 1 to 100, touching each number as they say the number name. Do this several times and also count backwards from 100 back down to 1.
- Talk to your child about how the numbers are organised on the square. For example, that the numbers in the top row are all single digit numbers, except for the number 10. The numbers in the second row all start with a 1 and are called 'teen numbers', they all have 1 ten. The numbers in the third row begin with a 2, they are the twenties, they all have 2 tens. Look at the columns, the numbers in the right hand column all end with a 0 , they are the numbers we say in the ten times table. If we look at the column with the number 3 at the top, then look down that column, all of the numbers end in 3 , they all have 3 ones, but they have one more ten each time. Can your child spot the patterns? Can they count up and down the columns as well as counting along the rows?
- Say random numbers and ask your child to place their finger on them. Can they find the number you have asked for quickly? Can they explain how

how they did it? For example, 'First I looked at the number of tens in each number and ordered them that way. I realised that 68 and 67 both have 6 tens, so I looked at the ones and put 67 first because 7 is less than 8 '.

Children need to learn correct spelling of numbers for when they write them in words. You could work on numbers one to ten one day, the teen numbers the next day, the twenties on another day, etc.

For counting large groups of objects, children should recognise that it takes a very long time to count in ones. They should group into tens first, then count in tens and count on for the ones, e.g. for 32 , they should say ' $10,20,30,31,32$ '. We use lots of different representations to illustrate this. The example below shows chalk that has been bundled into a stick of ten and then the ones separately. It also shows something called 'Diennes' ('Base Ten' is another name for this) and these come in sticks for the tens and little cubes for the ones. The last image shows some 'Tens Frames'. Children learn that there are ten spaces in the frame and when a frame is full of counters, we know there are ten without having to count them all individually.

What numbers are represented below? Write your answer in numerals and words.

Give your child objects that they can group into tens and ones in order to count them. You could use pennies, pieces of pasta, lego \qquad almos \dagger anything so long as it is small and you have a lot of them!!!!!!

Extra Activities for Children Working at Greater Depth
A big part of Working At Greater Depth is the ability to see that there are different ways of doing things and children being able to explain their reasoning and their reasons for choosing particular strategies. Children should write sentences or draw pictures to explain their thinking. If they have written an explanation of how they did something, how clear is it for another person to follow? Would somebody else be able to do it by following your child's explanation? If not, perhaps they need to be more specific?

	Tom says he has 61 Is he correct? Explain your reasoning Each bag contains 10 cookies. How many cookies are there altogether? Write your answers in numerals and words. What strategy did you use? Did your partner use a different method? What is the best strategy to use When everything goes back to normal and we are allowed to see our friends again, Miss Jordan would like to have a party! She has 53 friends. She wants to serve sandwiches. It takes 2 slices of bread to make one sandwich, but once the sandwiches have been made, she will cut them into 4 triangles. Each friend will get two triangles. There are 15 slices of bread in a loaf. How many bags of bread will she need to buy? Will there be any slices of bread left over? Did you need to draw or write anything to help you to work out the answer?
Activity 2	Objective: To represent numbers. - Children need to be able to represent numbers to 100 using a range of concrete materials as well as representing them on a number line. - Children should be able to state how a number is made up. For example, they can express 42 as 4 tens and 2 ones or as 42 ones. Working Towards the Expected Standard - Keep on counting using your 100 square and talking about the patterns you can see. - Counting objects. Use any small objects (pennies, pieces of pasta, lego.......). Show your child a number and ask them to count out objects to represent that number. You can make this super easy by using only numbers to 10 or 20 or you can make it harder by asking them to count larger quantities. Children sometimes struggle with counting accurately because they do not yet have what is called ' 1 to 1 correspondence'. This

	How many two digit numbers can you make using the digit cards? What is the largest number? Prove it by using concrete resources. What is the smallest number? Prove it by using concrete resources. Why can't the O be used as a tens number?
Activity 3	Objective: Tens and Ones as a Part Whole Model. - Children need to partition numbers (split them) and have an understanding of what each digit represents. - Children need to partition numbers in a variety of different ways, not just as tens and ones. Working Towards the Expected Standard These are Part Whole Models. They show that 7 can be made out of 5 and 2 and that 5 can be made out of 2 and 3 . Make some Part Whole Models with your child. You might want to start with something they already know, such as different ways of making ten, e.g. 10 can be 9 and 1, or 8 and 2, or 7 and 3, etc. Don't just stick with ten though, try some other numbers too. How many different ways are there

to make the same number? Use small objects (pennies, pasta, lego, etc) and
count out the starting number, then try splitting it in different ways, e.g. 7
can be split into 4 and 3. Show how the reverse is true too, so if I started
with 4 and 3, I would have 7 altogether.
Working At the Expected Standard
Complete the part whole models.
Looking at the cupcake activity above, how did you count how many
cupcakes there were altogether? Did you count every single cupcake one at
a time or was there a faster way to count?
Draw a part whole model to show how many cupcakes there are
altogether.

	Look at the Extended Part Whole Model above. The solution has been given to you so that you can see how to do it. Can you make your own Extended Part Whole Models? Perhaps you could make some for a grown-up or a sibling to complete. Can you give them any top tips for how to complete them? Have a think about your number knowledge. You know all sorts of things. You know: - CLIC Learn-its - Number bonds to ten, twenty or even 100, - Times Tables, - Doubles and Halves, or even other fractions, for example you might know that a third of 21 is 7 . Can any of these things help you to do Part Whole Models? How do they help? Can you give an example that shows how these things might help?
$\begin{aligned} & \text { Activity } \\ & 4 \end{aligned}$	Objective: Tens and ones for addition. - Children need to know how tens and ones can be partitioned and recombined to make a total. - Children need to understand that the = sign means 'equal to' (it doesn't mean 'this is the answer'), so it can be placed at the beginning of a number sentence, not just at the end. Working Towards the Expected Standard - Work with your child to add ten and a given number of ones (so all of the answers will be teen numbers). For example, $10+4=14,10+1=11$. Use small objects to count to begin with, so they would count out 10 objects

Hattie has 20 sweets and Noah has 15 sweets. Represent the total number of sweets:

- With concrete resources
- In a part whole model
- As a number sentence

Extra Challenge!!!!!

Can you explain why we can put the equals sign at the beginning of our calculations as well as at the end? Can you write some sentences to explain it? Imagine that you are explaining to somebody younger than you or to an alien from another planet. You would need to explain fully so that they understood you.

Extra Activities for Children Working at Greater Depth

Joel thinks that:

Explain the mistake he has made.

Can you show the correct answer using concrete resources?

A Little Extra

The White Rose End of Block Assessment is also included here with the other resources. Children do one of these at the end of each maths topic, so they have already done this (a long time ago). You might want to give it to them at the end of this week to see if they can complete it independently and if there are still things they have not understood.

