Year 2 Maths Activities - Week Beginning 22.6.20.

Dear Parents and Carers,
We are going to continue with our revision. Last week we learned about Shape and we are going to continue with that this week. In fact, our work about Shape will continue into a third week. Therefore, the notes below are exactly the same as they were last week, but the activities have been changed.

I have decided not to divide the sessions up into 3 levels of difficulty, as this topic is a bit more straight-forward than some of the others. However, I have tried to find some extra challenges for those children Working At Greater Depth.

Before we begin, let's look at what children in Year 2 need to know about Shape.

- A lot of this topic is about learning new vocabulary. There are a lot of 'special maths words' that we need to know. Children should not only know this vocabulary, but they should also use it accurately to describe and reason about shapes.
- We teach that 2D shapes only have 2 dimensions; length and height, but they have no depth or thickness. In reality, 2D shapes can only be drawn as flat images, we cannot pick them up and handle them.
- 3D shapes have 3 dimensions; length, height and depth. They are solid objects that can be picked up and handled.
- When learning about 2D shapes we teach their properties as 'sides' and 'vertices'. Sides can be straight or curved and we might also be interested in how long they are in comparison to other sides. This is particularly relevant when comparing squares and rectangles.
Children often say things like ' a rectangle is a squashed square or a square that has been stretched' - we want to discourage talk like this. They should be saying that a rectangle is a quadrilateral (4 sided shape), with 2 longer sides and 2 shorter sides, whereas the sides of a square are all equal in length. 'Vertices' are corners, or the points where two sides meet. For example, a square has 4 vertices.
- When learning about 3D shapes we teach their properties as 'edges', 'vertices' and 'faces' or 'surfaces'. Typically, we would want to know the number of edges, faces / surfaces and vertices a shape has, but we might also want to know the length of the edges in comparison to other edges and we would want to know the shape of the faces / surfaces.
Children often confuse 2D and 3D shapes when talking about them. They might call a 'cube' a 'square', when they should be saying 'it is a cube, and it has 6 square faces'. In other words, we use the names of 2D shapes when talking about the shape of the faces on a 3D shape, but we know that the overall shape has a different name.
- Children also need to know that shapes can be rotated, but this does not change their name. Below are two squares. The second one is not a diamond (in fact, the word 'diamond' is not a mathematical term at all). Just because it is being shown at an angle that we are not used to seeing, does not mean that its name changes, it still has 4 sides that are equal in length and 4 vertices. It also has 4 right angles. We don't strictly teach about angles in Year 2, but I find it is often necessary to have a very basic discussion about them because otherwise we wouldn't be able to differentiate between things like squares and rhombuses.

square \qquad also a square \qquad rhombus (not a square)
- Children also need to know about regular and irregular shapes. Regular shapes are the ones we are used to seeing, like the square above. All sides and internal angles are the same.
Irregular shapes have sides and angles that are not all the same. Below are some pentagons. They are 5 sided shapes and that is what makes them pentagons, however only the first one is regular.

- Please see the attached sheets / posters which give the properties of 2D and 3D shapes. Just a couple of small notes;
- Unfortunately the rhombus on the 2D poster actually does look like a rotated square (you might want to stick a more accurate rhombus over the top of it!)
- There are several 4 sided shapes on the 2D poster, although I don't think it shows all of the possible 4 sided shapes. Teach your child that the collective term for 4 sided shapes is 'quadrilateral'. Squares, rectangles, rhombus', kites, parallelograms, etc, are all different types of quadrilateral. We can give them different names when we know about their other properties, such as length of the sides and their angles.
- The 2D poster only shows one type of triangle. Any 3 sided shape is a triangle (like we said about pentagons above, and in fact we could say it about other shapes, such as hexagons too!). Make sure that your child sees different types of triangles, e.g. equilateral, right angle, isosceles, etc.
- The 3D shape poster refers to 'surfaces'. We can use the term 'surface' to essentially mean the same thing as 'face'. It can be useful, particularly when talking about shapes that have curved surfaces. For example, a cone has one flat face or surface that is a circle, but it also has a 'curved surface' that sort of wraps all the way around. It has 2 faces / surfaces really, one that is flat and one that is curved.
- Children learn to use all of this mathematical vocabulary to describe shapes and to explain their reasoning about them. They also use what they know about shapes and their properties to sort them in different ways (typically in Venn and Carroll diagrams). They also use shapes to identify, describe and create patterns.

What is a Carroll Diagram?

	blue	not blue
square		
not square		

Carroll

Click on the shapes

- In addition to the above features / properties, children also learn about lines of symmetry and to count the number of lines of symmetry 2D shapes have.

Activity 1	Objective: Sort 2D shapes. Notes and Guidance Children need to be able to recognise and name 2D shapes including circle, square, triangle, rectangle, pentagon, hexagon and octagon using a range of different orientations and real life objects. Children need to be able to count the number of sides and vertices on 2D shapes including circle, square, triangle, rectangle, pentagon, hexagon and octagon. Children may have been introduced to the Venn diagram in cross curricular work so they can focus on the shapes within this step. Mathematical Talk
How have you sorted your shapes? How do you know you have sorted your shapes correctly? Which method have you used to sort your shapes?	
Activities	
Sort these 2D shapes into the correct group:	

| Complete the worksheet about sorting |
| :--- | :--- |
| Shapes. |
| Extra Activities for Children Working at Greater Depth |
| Sorting Logic Blocks |
| Age 5 to 11 \star |
| For this task, you'll need some blocks of different
 shapes and colours, or you could print off and
 cut out the shapes on this sheet.
 Choose a rule, like 'only have four-sided
 shapes' or 'only have large shapes'.
 Challenge someone else to work out your rule.
 They can do this by choosing a shape for you to
 say either "Yes, that obeys my rule and is in my
 set" (you then put it over on the left) or "No, this
 does not obey my rule and so is not in my set"
 (you then put it over on the right).
 How did they decide which shapes to choose?
 Did they get quicker at finding out the rule?
 What was the smallest number of shapes they needed to try?
 Could you make some more shapes to add to the set? What would you make and
 why? |
| Tell us about some of the rules you chose and how you decided which shapes to
 try. |
| N.B. the link above that says 'this sheet' doesn't work. The sheet is saved |
| on the school website along with the other resources. |

Activity	
	Objective: Make patterns with 2D shapes. Notes and Guidance At this stage children should be able to name and draw 2D shapes and be familiar with their properties. Children should recognise symmetry within shapes and be shown shapes in different orientations. Children should be encouraged to place the shapes in different orientations when making patterns and recognise that it is still a square, triangle etc. Squares do not become diamonds when turned sideways.
Mathematical Talk Can you explain the pattern? How many time does the pattern repeat? How are these patterns similar? How are these patterns different? How can you work out which shape will come __th? Activities	
2 Draw pictures to represent this pattern:	

$\left[\begin{array}{l}\text { Use the shape sheets provided for yesterday's activity (saved as } \\ \text { 'Shapes to Cut Out' and 'Sorting Logic Blocks Sheet'). Cut them out } \\ \text { and make your own patterns (or you could draw your patterns). Try } \\ \text { making a pattern like the one above that uses only one shape that } \\ \text { has been rotated in different ways. } \\ \text { Catherine says that the 12th shape in this } \\ \text { pattern will be a triangle. }\end{array}\right.$
Is she correct? How do you know? How many different ways can you arrange these shapes to make a repeating pattern?
with 4 vertices.

| I added another row and counted the number of small triangles and counted the |
| :--- | :--- |
| matches. |

| Sam is drawing all the 2D shapes she
 finds on 3D shapes. She draws 8 squares
 for a cube. Is she right? |
| :--- | :--- |
| Prove it! |
| Complete the worksheet about counting |
| the faces on 3D shapes. |
| Extra Activities for Children working at Greater Depth
 Building with Solid Shapes
 Age 5 to $7 \star$
 We have a box of solid shapes. In it there are cubes, triangular prisms, cones,
 cuboids, cylinders and tetrahedrons. |

	Which of the buildings below would fall down if we tried to make them? Which ones would be unstable and possibly collapse? Can you write sentences to explain WHY some of these buildings would fall down and why others wouldn't? When writing your sentences, look at the 3D shape poster from last week's resources (archive folder). Use the correct vocabulary, such as 'face', 'curved surface', 'edge', 'vertices or vertex', 'flat', 'curved', etc.
Activity 4	Objective: Count edges on 3D shapes. Notes and Guidance Children will use their knowledge of faces and curved surfaces to help them to identify edges on 3D shapes. They need to be discretely taught that an edge is where 2 faces meet or where a face and a curved surface meet. To avoid over counting the edges children need to mark each edge in some way. Children need to be able to visualise the 3D shape from a 2D representation on paper. Mathematical Talk What do we mean by the 'edge' of a shape? How can you make sure that you don't count the edges more than once? What do you notice about the shapes with \qquad edges?

Here are the nets of 9 solid shapes. Each one of these has been cut into 2
pieces, like the net of the cube.
Can you see which pieces go together?
N.B. if this problem seemed a bit tricky (as it did for me!), the solution
can be found here:
https://nrich.maths.org/2315/solution
Again, the link does not work. Sorry! Please copy and paste it 9

(ack says: All 3D shapes have

| Extra Activities for Children Working at Greater Depth |
| :--- | :--- |
| Skeleton Shapes |
| Age 5 to 7 ** |
| skeleton shapes are made with balls of modelling clay and straws. |
| This shows a cube and a skeleton cube: |
| How many balls of modelling clay and how many straws does it take to make the |
| cube? |
| Here are some piles of modelling clay balls and straws: |
| Look at the shapes below and decide which piles are needed to make a skeleton |
| of each shape. |

I have not included the White Rose End of Block Assessment with the materials this week because we will be learning more

about Shape next week (only for the first couple of days).
Just in case you didn't see this last week..........
There is a little extra though!
If you Google 'I See Maths Videos', the top result that comes up is 'All Home Lessons - I See Maths'.
This website has videos for learning maths at home. They teach you how to play little maths games with different levels of challenge. They cover different topics like Money, Addition and Subtraction and Multiples. They have a few printable resources to support the games too. I have watched a couple of the videos and can recommend them. ©

